000 | 01673nam a2200289Ia 4500 | ||
---|---|---|---|
003 | BD-DhDIU | ||
005 | 20230822151128.0 | ||
008 | 041027s2004 maua b 001 0 eng d | ||
010 | _a 2004109627 | ||
020 | _a0262012111 | ||
035 | _a(OCoLC)ocm56830710 | ||
035 | _a(NNC)5003624 | ||
040 |
_aTEF _cTEF _dOrLoB-B _dBD-DhDIU _bENG |
||
050 | 4 |
_aQ325.5 _b.A473 2004 |
|
082 | 0 | 4 |
_a006.31/ A456i _222 |
100 | 1 |
_aAlpaydin, Ethem. _93071 |
|
245 | 1 | 0 |
_aIntroduction to machine learning _cEthem Alpaydın. |
260 |
_aNew Delhi : _bPrentice-Hall of India, _cc2004. [reprinted 2006] |
||
300 |
_axxx, 415 p. : _bill. , figs.; _c24 cm. |
||
504 | _aIncludes bibliographical references and index. | ||
505 | 0 | 0 |
_g1. _tIntroduction -- _g2. _tSupervised learning -- _g3. _tBayesian decision theory -- _g4. _tParametric methods -- _g5. _tMultivariate methods -- _g6. _tDimensionality reduction -- _g7. _tClustering -- _g8. _tNonparametric methods -- _g9. _tDecision trees -- _g10. _tLinear discrimination -- _g11. _tMultilayer perceptrons -- _g12. _tLocal models -- _g13. _tHidden Markov models -- _g14. _tAssessing and comparing classification algorithms -- _g15. _tCombining multiple learners -- _g16. _tReinforcement learning -- _gA. _tProbability. |
520 | 1 | _a"This book can be used by advanced undergraduates and graduate students who have completed courses in computer programming, probability, calculus, and linear algebra. It will also be of interest to engineers in the field who are concerned with the application of machine learning methods."--BOOK JACKET. | |
526 | _aCSE, CIS, CS | ||
650 | 0 |
_aMachine learning. _93072 |
|
900 | _bTOC | ||
942 |
_2ddc _cBK _026 |
||
999 |
_c2233 _d2233 |