000 01673nam a2200289Ia 4500
003 BD-DhDIU
005 20230822151128.0
008 041027s2004 maua b 001 0 eng d
010 _a 2004109627
020 _a0262012111
035 _a(OCoLC)ocm56830710
035 _a(NNC)5003624
040 _aTEF
_cTEF
_dOrLoB-B
_dBD-DhDIU
_bENG
050 4 _aQ325.5
_b.A473 2004
082 0 4 _a006.31/ A456i
_222
100 1 _aAlpaydin, Ethem.
_93071
245 1 0 _aIntroduction to machine learning
_cEthem Alpaydın.
260 _aNew Delhi :
_bPrentice-Hall of India,
_cc2004. [reprinted 2006]
300 _axxx, 415 p. :
_bill. , figs.;
_c24 cm.
504 _aIncludes bibliographical references and index.
505 0 0 _g1.
_tIntroduction --
_g2.
_tSupervised learning --
_g3.
_tBayesian decision theory --
_g4.
_tParametric methods --
_g5.
_tMultivariate methods --
_g6.
_tDimensionality reduction --
_g7.
_tClustering --
_g8.
_tNonparametric methods --
_g9.
_tDecision trees --
_g10.
_tLinear discrimination --
_g11.
_tMultilayer perceptrons --
_g12.
_tLocal models --
_g13.
_tHidden Markov models --
_g14.
_tAssessing and comparing classification algorithms --
_g15.
_tCombining multiple learners --
_g16.
_tReinforcement learning --
_gA.
_tProbability.
520 1 _a"This book can be used by advanced undergraduates and graduate students who have completed courses in computer programming, probability, calculus, and linear algebra. It will also be of interest to engineers in the field who are concerned with the application of machine learning methods."--BOOK JACKET.
526 _aCSE, CIS, CS
650 0 _aMachine learning.
_93072
900 _bTOC
942 _2ddc
_cBK
_026
999 _c2233
_d2233