000 | 01909nam a2200325 a 4500 | ||
---|---|---|---|
003 | BD-DhDIU | ||
005 | 20170920143152.0 | ||
008 | 940801s1995 maua b 001 0 eng | ||
010 | _a 94030749 | ||
020 | _a0262011441 | ||
035 | _a(OCoLC)30971691 | ||
035 | _a(OCoLC)ocm30971691 | ||
035 | _a(NNC)1646866 | ||
040 |
_aDLC _cDLC _dDLC _dOrLoB _dBD-DhDIU _bENG |
||
050 | 0 | 0 |
_aQP363.3 _b.A534 1995 |
082 | 0 | 0 |
_a612.8 _222 |
100 | 1 |
_aAnderson, James A. _93091 |
|
245 | 1 | 3 |
_aAn introduction to neural networks _cJames A. Anderson. |
250 | _aEastern economy ed. | ||
260 |
_aNew Delhi : _bPrentice-Hall of India, _cc1995. [reprinted 2001] |
||
300 |
_axi, 650 p. : _bill., figs., tables ; _c26 cm. |
||
500 | _a"A Bradford book." | ||
504 | _aIncludes bibliographical references and index. | ||
505 | 0 | _a1. Properties of Single Neurons -- 2. Synaptic Integration and Neuron Models -- 3. Essential Vector Operations -- 4. Lateral Inhibition and Sensory Processing -- 5. Simple Matrix Operations -- 6. The Linear Associator: Background and Foundations -- 7. The Linear Associator: Simulations -- 8. Early Network Models: The Perceptron -- 9. Gradient Descent Algorithms -- 10. Representation of Information -- 11. Applications of Simple Associators: Concept Formation and Object Motion -- 12. Energy and Neural Networks: Hopfield Networks and Boltzmann Machines -- 13. Nearest Neighbor Models -- 14. Adaptive Maps -- 15. The BSB Model: A Simple Nonlinear Autoassociative Neural Network -- 16. Associative Computation -- 17. Teaching Arithmetic to a Neural Network. | |
526 | _aCSE, CIS, CS, ETE | ||
650 | 0 | 0 |
_aNeural networks (Neurobiology) _93092 |
900 | _bTOC | ||
942 |
_2ddc _cBK _01 |
||
999 |
_c265 _d265 |